A METHOD OF COMPUTING HEAT TRANSFER
COEFFICIENT IN THE FLOW OF A CHEMICALLY
REACTING N,0, GAS
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A criterial relation is derived which connects the heat transfer coefficient with the difference
in the concentrations of the O, component at the wall and in the flow, A method of determining
the concentration difference is proposed. A comparison with the experimental data shows
that the proposed method gives satisfactory results in a wide range of pressures and temper-
atures.

Assuming that the turbulent heat and mass transports are similar and that the "frozen-in" Lewis num-
ber is equal to unity, the equation of conservation of energy for a chemically active gas can be written in
the form of the corresponding equation for an inert gas [1] and the solutions of these equations for appropri-
ate boundary conditions will coincide:
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and for a chemically active gas referred to the enthalpy difference at the wall and in the flow
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and for a chemically inert gas will be, taking into account (1), the following:
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According to computations cyf changes very insignificantly in a wide range of temperatures. For example,
in the range 300-1000°K Cpf changesfrom 0.21to 0.26 kcal/kg - deg. Therefore it can be taken to be constant
and equal to the mean value inthe temperature range Tj-T¢.

Hence
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and for the reaction proceeding in accordance with the scheme
N,0, == 2NO, == 2NO - O

we obtain
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Equation (2) enables one to compute the heat transfer coefficient in the turbulent channel flow of the mixture
in chemical equilibrium (N,O, = 2NO,) and nonequilibrium (2NO, == 2NO + O,). In the first case the follow-
ing equation is used for determining the relative concentration of the N,O, component at the wall [7]:
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The results of an experimental investigation of heat transfer in the turbulent flow of an equilibrium dis-
sociating mixture N,0, = 2NO, in a circular fube have been analyzed for the pressure range P = 10-85 atm
and for the values of Reynolds number Re = 10%-2-10% It was found that formula (2) describes the experi-
mental points with a maximum scatter of 15%. As the results showed, this formula is applicable even in
the pressure range P = 120-150 atm. In the case of the second nonequilibrium dissociation stage

2NO, =2NO 4- O ‘
the formula for computing the concentration of the O, component is obtained in the following way.

The equation of mass conservation for the k-th component can be written in the following form under the
assumption that the diffusion coefficient and the density are constant, and Prandtl number is equal to unity:
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Integrating Eq. (3) over R from 0 to 1 and putting 8¢y /6R}; = 0, we obtain
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Assuming that dcj/8x ~ acko/ax [3] and making use of (4) we obtain the following equation for the concen-
tration difference:
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Putting w = 1 and remembering that 0.5 = Sc = 1 we have
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We apply the method of integration of a product to Eq. (6) twice. Then for the second nonequilibrium dis-
sociation stage we have

i 3
. 2 P 14 3
Cyo— Cgp = — Day, [ ;gRexp L__,_) Ini6 — R (i) —01lR (ﬂ) Ini6—R|dR - > ]
4 T, ¢/ Cag / Co /. 4
R . 0
Sce —y(6—R)R, y—uRe) FB2Sc, E— 50 (46
o - o ReT
_d rev X
2—039, o= Mlup_ mJuw g g4 v
140 ]40 .
2 ) 3.3 s (7
fo :,‘—Of Koz, JIrIev= 4 —*@— 0 ? s
e eIl my
/25800 Ko
Kerrs = 105 exp (* —RT"), ar = RD]T .

1n K prr= —0.58451n (T 104+ 12.5862- 10* - — 147.088.10° —-

4 17:3121 — 0.3079-107*T — 1.60117.107872 — 0.1183- 1012737}
Let us evaluate the integrals océurring in (7):
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We shall approximaté‘ the integrand in the following way:
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We can determine A, for example, from the condition of equality of the right and left hand sides of Eq. (9)

for x =R = 1. For the investigated range of parameters q = 1.4-5.5- 102, Re = 0.2-2* 10% A was found to be
approximately equal to 1, Then integral (8) becomes
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Fig. 1. A comparison of the results of computation
by formulas (2), (10) with experimental data in the
range of parameters P = 11.5-150 atm, Re = 0.3-2

* 105, T,= 500-800°K, Tp = 559-900°K [1) P = 11.5-30
atm; 2) 40-85; 3) 120-150]. The ratio cpegr/cpy is
plotted on the abscissa.
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Using the above method of computing the heat transfer coefficient we analyzed the results of experi-
mental investigations carried out at the Nuclear Energetics Institute of the Academy of Sciences of the BSSR
[8, 9] (see Fig. 1). The scatter of the points is +20% and the root mean square error is 5%. The average
values of the quantities were calculated in accordance with the recommendations of [10].

NOT A‘ TION
h is the specific enthalpy, keal/kg;
T is the time, sec;
q is the heat flux density, kecal /m2- sec;
ex = PK/p is the relative partial density of the k-th component;
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is the density of the multicomponent mixture, kg/m3

Y

Ik is the source of the k-th component of the mixture, kg/m?- sec;

Dg is the diffusion coefficient of the multicomponent mixture, m?/sec;

A is the thermal conductivity, kcal/m?- sec;

T is the absolute temperature, °K;

Le is the Lewis number;

Cp is the specific heat at constant pressure, kcal/kg ' deg;

w is the velocity of the fluid, m/sec;

Re is the Reynolds number;

Pe is the Peclet number;

Se is the Schmidt number;

wipr) is the coefficient of dynamic (turbulent) viscosity, kg/m - sec;

6=1—06%ry

5% is the thickness of the laminar sublayer, m;

Jiip JerV are the direct and reverse reaction rates of the second stage of decomposition of N,0,,
kg/m3- sec;

v=E/R is a coefficient; deg;

E is the activation energy, keal/kmole;

R is the universal gas constant, keal/kmole - deg;

R is the universal gas constant, m3-atm/kmole - deg;

Kerrsr Keir

g
Qpls Q11

are the rate constants of dissociation, liter/mole - sec and equilibrium, mole/liter, of
the second stage of decomposition of N,O,, respectively;

is the mass of the k-th component;

are the heat effects ofthe first and second stage of reaction, kecal /kmole.

Subscripts

k denotes the k-th component of the mixture;
f denotes the "frozen-in" component;
eff denotes the "effective" characteristics;
c denotes the wall parameters;
o denotes the flow parameters;
in denotes the value of the parameters at the entrance to the channel;
L denotes the value of the parameters in the case of equilibrium reaction;
1 denotes N,yOg;
2 denotes NO,;
3 denotes NO;
4 denotes Oy
d, rev denote the direct and reverse reactions;
I denotes the first stage of the reaction;
i3 denotes the second stage.
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